mIoT Slice for 5G Systems: Design and Performance Evaluation
نویسندگان
چکیده
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment.
منابع مشابه
Optimal Slice Allocation in 5G Core Networks
Network slicing is the key to providing flexible, scalable and on-demand solutions for the vast array of applications in 5G networks. Two key challenges of 5G networks are the network slicing and guaranteeing end-to-end delay for a slice. In this paper, we address the question of optimal allocation of a slice in 5G core networks. We adopt and extend the work by D. Dietrich et al. [1] to create ...
متن کاملPolicy Model for Sharing Network Slices in 5G Core Network
As mobile data traffic increases, and the number of services provided by the mobile network increases, service load flows as well, which requires changing in the principles, models, and strategies for media transmission streams serving to guarantee the given nature of giving a wide scope of services in Flexible and cost-effective. Right now, the fundamental question remains what number of netwo...
متن کاملA New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کاملAir interface design for 5G: a METIS-II perspective
This paper describes the approach adopted by EU H2020 / 5G-PPP project “METIS-II” for a harmonized 5G air interface (AI) design, based on a suitability assessment framework for 5G AI candidates. The assessment focuses on “harmonization KPIs” and how to measure them (qualitatively / quantitatively). The paper proposes that evaluation of 5G AI candidates should, in addition to performance, includ...
متن کاملEvaluation of MRI-based Polymer Gel Dosimetry for Measurement of CT Dose Index (CTDI) on 64 slices CT Scanners
Introduction: Computed tomography (CT) has numerous applications in clinical procedures but its main problem is its high radiation dose to the patients compared to other imaging modalities using x-ray. CT delivers approximately high doses to the nearby tissues due to the scattering effect, fan beam (beam divergence) and limited collimator efficiency. The radiation dose from multi-slice scanners...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018